LM2595 SIMPLE SWITCHER ${ }^{\circledR}$ Power Converter 150-kHz 1-A Step-Down Voltage Regulator

1 Features

- 3.3-V, 5-V, 12-V, and Adjustable Output Versions
- Adjustable Version Output Voltage Range, 1.2 V to $37 \mathrm{~V} \pm 4 \%$ Maximum Over Line and Load Conditions
- Available in TO-220 and TO-263 Surface-Mount Packages
- Ensured 1-A Output Load Current
- Input Voltage Range Up to 40 V
- Requires Only 4 External Components
- Excellent Line and Load Regulation Specifications
- 150-kHz Fixed-Frequency Internal Oscillator
- TTL Shutdown Capability
- Low Power Standby Mode, I_{Q}, Typically $85 \mu \mathrm{~A}$
- High Efficiency
- Uses Readily Available Standard Inductors
- Thermal Shutdown and Current-Limit Protection

2 Applications

- Simple High-Efficiency Step-Down (Buck) Regulator
- Efficient Preregulator for Linear Regulators
- On-Card Switching Regulators
- Positive-to-Negative Converter

3 Description

The LM2595 series of regulators are monolithic integrated circuits that provide all the active functions for a step-down (buck) switching regulator, capable of driving a 1-A load with excellent line and load regulation. These devices are available in fixed output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}, 12 \mathrm{~V}$, and an adjustable output version.

Requiring a minimum number of external components, these regulators are simple to use and include internal frequency compensation, and a fixedfrequency oscillator.
The LM2595 series operates at a switching frequency of 150 kHz , thus allowing smaller-sized filter components than what would be needed with lowerfrequency switching regulators. Available in a standard 5-pin TO-220 package with several different lead bend options, and a 5-pin TO-263 surface-mount package. Typically, for output voltages less than 12 V , and ambient temperatures less than $50^{\circ} \mathrm{C}$, no heat sink is required.

Device Information ${ }^{(1)}$

PART NUMBER	PACKAGE	BODY SIZE (NOM)
LM2595	TO-263 (5)	$10.16 \mathrm{~mm} \times 8.42 \mathrm{~mm}$
	TO-220 (5)	$14.986 \mathrm{~mm} \times 10.16 \mathrm{~mm}$

(1) For all available packages, see the orderable addendum at the end of the data sheet.

(Fixed Output Voltage Versions)

An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA.

Table of Contents

1 Features 1
2 Applications 1
3 Description 1
4 Revision History 2
5 Description (continued) 3
6 Pin Configuration and Functions 3
7 Specifications 4
7.1 Absolute Maximum Ratings 4
7.2 ESD Ratings 4
7.3 Recommended Operating Conditions 4
7.4 Thermal Information 4
7.5 Electrical Characteristics - 3.3 V 5
7.6 Electrical Characteristics - 5 V 5
Electrical Characteristics - 12 V 5
7.8 Electrical Characteristics - Adjustable 6
7.9 Electrical Characteristics - All Output Voltage Versions 6
7.10 Typical Characteristics 7
8 Detailed Description 10
8.1 Overview 10
8.2 Functional Block Diagram 10
8.3 Feature Description 10
8.4 Device Functional Modes 14
9 Application and Implementation 15
9.1 Application Information 15
9.2 Typical Applications 23
10 Power Supply Recommendations 31
11 Layout. 31
11.1 Layout Guidelines 31
11.2 Layout Examples 31
11.3 Thermal Considerations 32
12 Device and Documentation Support 34
12.1 Community Resources. 34
12.2 Trademarks 34
12.3 Electrostatic Discharge Caution. 34
12.4 Glossary 34
13 Mechanical, Packaging, and Orderable Information 34
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision B (April 2013) to Revision C Page

- Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section 1
- Removed all references to design software Switchers Made Simple 1
- Removed NEB package from data sheet 4
Changes from Revision A (April 2013) to Revision B Page
- Changed layout of National Semiconductor Data Sheet to TI format 32

LM2595
www.ti.com

5 Description (continued)

A standard series of inductors are available from several different manufacturers optimized for use with the LM2595 series. This feature greatly simplifies the design of switch-mode power supplies.

Other features include a $\pm 4 \%$ tolerance on output voltage under specified input voltage and output load conditions, and $\pm 15 \%$ on the oscillator frequency. External shutdown is included, featuring typically $85-\mu \mathrm{A}$ standby current. Self protection features include a two stage frequency reducing current limit for the output switch and an overtemperature shutdown for complete protection under fault conditions.

6 Pin Configuration and Functions

Pin Functions

PIN		1/0	DESCRIPTION
NO.	NAME		
1	Output	O	Internal switch. The voltage at this pin switches between ($+\mathrm{V}_{\text {IN }}-\mathrm{V}_{\mathrm{SAT}}$) and approximately -0.5 V , with a duty cycle of approximately $\mathrm{V}_{\mathrm{OUT}} / \mathrm{V}_{\text {IN }}$. To minimize coupling to sensitive circuitry, the PCB copper area connected to this pin must be kept to a minimum.
2	$+\mathrm{V}_{\text {IN }}$	1	This is the positive input supply for the IC switching regulator. A suitable input bypass capacitor must be present at this pin to minimize voltage transients and to supply the switching currents needed by the regulator.
3	Ground	-	Circuit ground.
4	Feedback	1	Senses the regulated output voltage to complete the feedback loop.
5	$\overline{\mathrm{ON}} / \mathrm{OFF}$	1	Allows the switching regulator circuit to be shut down using logic level signals, thus dropping the total input supply current to approximately $85 \mu \mathrm{~A}$. Pulling this pin below a threshold voltage of approximately 1.3 V turns the regulator on, and pulling this pin above 1.3 V (up to a maximum of 25 V) shuts the regulator down. If this shutdown feature is not needed, the ON/OFF pin can be wired to the ground pin or it can be left open, in either case the regulator is in the ON condition.

7 Specifications

7.1 Absolute Maximum Ratings ${ }^{(1)(2)}$

			MIN	MAX	UNIT
Maximum supply vo				45	V
$\overline{\mathrm{ON}} / \mathrm{OFF}$ pin input			-0.3	25	V
Feedback pin volta			-0.3	25	V
Output voltage to g	ady-state)			-1	V
Power dissipation			Inter	ited	
	KTT package	Vapor phase (60 sec)		215	
Lead temperature	KTr package	Infrared (10 sec)		245	${ }^{\circ} \mathrm{C}$
	NDH package			260	
Maximum junction				150	${ }^{\circ} \mathrm{C}$
Storage temperatur			-65	150	${ }^{\circ} \mathrm{C}$

(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.

7.2 ESD Ratings

			VALUE
$V_{(E S D)}$	Electrostatic discharge	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001	(1)

(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

	MIN	MAX
UNIT		
Supply voltage	4.5	40
Temperature range, T_{J}	-40	125

7.4 Thermal Information

		THERMAL METRIC ${ }^{(1)}$	LM2595		UNIT
			$\begin{gathered} \text { KTT } \\ \text { (TO-263) } \end{gathered}$	$\begin{gathered} \text { NDH } \\ (\mathrm{TO}-220) \end{gathered}$	
			5 PINS	5 PINS	
		Printed-circuit board with 1-oz copper area of approximately $1 \mathrm{in}^{2}$	-	50	
	Junction-to-ambient	Printed-circuit board with $0.5 \mathrm{in}^{2}$ of 1-oz copper area	50	-	
	thermal resistance ${ }^{(2)}$	Printed-circuit board with $2.5 \mathrm{in}^{2}$ of 1-oz copper area	30	-	
		Double-sided, printed-circuit board with $3 \mathrm{in}^{2}$ of 1-oz copper area	20	-	
$\mathrm{R}_{\text {өJC(top) }}$	Junction-to-case (top) th	sistance	2	2	${ }^{\circ} \mathrm{C} / \mathrm{W}$

(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.
(2) The package thermal impedance is calculated in accordance to JESD 51-7.
(3) Thermal resistances were simulated on a 4-layer, JEDEC board

7.5 Electrical Characteristics - 3.3 V

Specifications are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ (unless otherwise noted).

	ARAMETER	TEST CONDITIONS		$\mathbf{M I N}{ }^{(1)}$	TYP ${ }^{(2)}$	MAX ${ }^{(1)}$	UNIT
SYSTEM PARAMETERS ${ }^{(3)}$ (see Figure 35 for test circuit)							
$\mathrm{V}_{\text {OUT }}$	Output voltage	$\begin{aligned} & 4.75 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 40 \mathrm{~V}, \\ & 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	3.168	3.3	3.432	V
			Over full operating temperature range	3.135		3.465	
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$		78\%			

(1) All limits specified at room temperature and temperature extremes. All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator system performance. When the LM2595 is used as shown in the Figure 35 test circuit, system performance is shown in the test conditions column.

7.6 Electrical Characteristics - 5 V

Specifications are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ (unless otherwise noted).

	ARAMETER	TEST CONDITIONS		MIN ${ }^{(1)}$	TYP ${ }^{(2)}$	MAX ${ }^{(1)}$	UNIT
SYSTEM PARAMETERS ${ }^{(3)}$ (see Figure 35 for test circuit)							
$\mathrm{V}_{\text {OUT }}$	Output voltage	$\begin{aligned} & 7 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, \\ & 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	4.8	5	5.2	V
			Over full operating temperature range	4.75		5.25	
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$		82\%			

(1) All limits specified at room temperature and temperature extremes. All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator system performance. When the LM2595 is used as shown in the Figure 35 test circuit, system performance is shown in the test conditions column.

7.7 Electrical Characteristics - 12 V

Specifications are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ (unless otherwise noted).

	ARAMETER	TEST CONDITIONS		$\mathbf{M I N}{ }^{(1)}$	TYP ${ }^{(2)}$	MAX ${ }^{(1)}$	UNIT
SYSTEM PARAMETERS ${ }^{(3)}$ (see Figure 35 for test circuit)							
$\mathrm{V}_{\text {OUT }}$	Output voltage	$\begin{aligned} & 15 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, \\ & 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A} \end{aligned}$	$\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$	11.52	12	12.48	V
			Over full operating temperature range	11.4		12.6	
η	Efficiency	$\mathrm{V}_{\mathrm{IN}}=25 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}=1 \mathrm{~A}$		90\%			

(1) All limits specified at room temperature and temperature extremes. All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator system performance. When the LM2595 is used as shown in the Figure 35 test circuit, system performance is shown in the test conditions column.

7.8 Electrical Characteristics - Adjustable

Specifications are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$ (unless otherwise noted).

PARAMETER	TEST CONDITIONS		MIN ${ }^{(1)}$	TYP ${ }^{(2)}{ }^{(2)}{ }^{(1)}$	UNIT
SYSTEM PARAMETERS ${ }^{(3)}$ (see Figure 35 for test circuit)					
$\mathrm{V}_{\mathrm{FB}} \quad$ Feedback voltage	$4.5 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 40 \mathrm{~V}, 0.1 \mathrm{~A} \leq \mathrm{I}_{\text {LOAD }} \leq 1 \mathrm{~A}$			1.23	V
	$\mathrm{V}_{\text {OUt }}$ programmed for 3 V , circuit of Figure 35	$\mathrm{T}_{J}=25^{\circ} \mathrm{C}$	1.193	1.267	
		Over full operating temperature range	1.18	1.28	
$\eta \quad$ Efficiency	$\mathrm{V}_{\text {IN }}=12 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=3 \mathrm{~V}, \mathrm{I}_{\text {LOAD }}$			78\%	

(1) All limits specified at room temperature and temperature extremes. All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
(3) External components such as the catch diode, inductor, input and output capacitors, and voltage programming resistors can affect switching regulator system performance. When the LM2595 is used as shown in the Figure 35 test circuit, system performance is shown in the test conditions column.

7.9 Electrical Characteristics - All Output Voltage Versions

Specifications are for $\mathrm{T}_{J}=25^{\circ} \mathrm{C}, \mathrm{I}_{\text {LOAD }}=200 \mathrm{~mA}, \mathrm{~V}_{\mathrm{IN}}=12 \mathrm{~V}$ for the $3.3-\mathrm{V}, 5-\mathrm{V}$, and adjustable versions, and $\mathrm{V}_{\text {IN }}=24 \mathrm{~V}$ for the $12-\mathrm{V}$ version (unless otherwise noted).

(1) All limits specified at room temperature and temperature extremes. All room temperature limits are 100% production tested. All limits at temperature extremes are specified via correlation using standard Statistical Quality Control (SQC) methods. All limits are used to calculate Average Outgoing Quality Level (AOQL).
(2) Typical numbers are at $25^{\circ} \mathrm{C}$ and represent the most likely norm.
(3) The switching frequency is reduced when the second stage current limit is activated. The amount of reduction is determined by the severity of current overload.
(4) No diode, inductor or capacitor connected to output pin.
(5) Feedback pin removed from output and connected to 0 V to force the output transistor switch ON.
(6) Feedback pin removed from output and connected to 12 V for the $3.3-\mathrm{V}, 5-\mathrm{V}$, and adjustable versions, and 15 V for the $12-\mathrm{V}$ version, to force the output transistor switch OFF.
(7) $\mathrm{V}_{\mathrm{IN}}=40 \mathrm{~V}$.

7.10 Typical Characteristics

Circuit of Figure 35

Figure 1. Normalized Output Voltage

Figure 3. Efficiency

Figure 5. Switch Current Limit

Figure 2. Line Regulation

Figure 4. Switch Saturation Voltage

Figure 6. Dropout Voltage

LM2595
SNVS122C -MAY 1999-REVISED MAY 2016
www.ti.com

Typical Characteristics (continued)

Circuit of Figure 35

Figure 7. Operating Quiescent Current

Figure 9. Minimum Operating Supply Voltage

Figure 11. $\overline{\mathrm{ON}} / \mathrm{OFF}$ Pin Current (Sinking)

Figure 8. Shutdown Quiescent Current

Figure 10. $\overline{\mathrm{ON}} / \mathrm{OFF}$ Threshold Voltage

Figure 12. Switching Frequency

Typical Characteristics (continued)

Circuit of Figure 35

Figure 13. Feedback Pin Bias Current

8 Detailed Description

8.1 Overview

The LM2595 SIMPLE SWITCHER ${ }^{\circledR}$ regulator is an easy-to-use, nonsynchronous step-down DC-DC converter with a wide input voltage range up to 40 V . The regulator is capable of delivering up to 1-A DC load current with excellent line and load regulation. These devices are available in fixed output voltages of $3.3-\mathrm{V}, 5-\mathrm{V}, 12-\mathrm{V}$, and an adjustable output version. The family requires few external components, and the pin arrangement was designed for simple, optimum PCB layout.

8.2 Functional Block Diagram

8.3 Feature Description

8.3.1 Delayed Start-Up

The circuit in Figure 14 uses the $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin to provide a time delay between the time the input voltage is applied and the time the output voltage comes up (only the circuitry pertaining to the delayed start up is shown). As the input voltage rises, the charging of capacitor C 1 pulls the ON/OFF pin high, keeping the regulator off. Once the input voltage reaches its final value and the capacitor stops charging, the resistor R2 pulls the ON/OFF pin low, thus allowing the circuit to start switching. Resistor R_{1} is included to limit the maximum voltage applied to the ON/OFF pin (maximum of 25 V), reduces power supply noise sensitivity, and also limits the capacitor, C1, discharge current. When high input ripple voltage exists, avoid long delay time, because this ripple can be coupled into the $\overline{\text { ON}} /$ OFF pin and cause problems.

This delayed start-up feature is useful in situations where the input power source is limited in the amount of current it can deliver. It allows the input voltage to rise to a higher voltage before the regulator starts operating. Buck regulators require less input current at higher input voltages.

Feature Description (continued)

Figure 14. Delayed Start-Up

8.3.2 Undervoltage Lockout

Some applications require the regulator to remain off until the input voltage reaches a predetermined voltage. Figure 15 shows an undervoltage lockout feature applied to a buck regulator, while Figure 16 and Figure 17 apply the same feature to an inverting circuit. The circuit in Figure 16 features a constant threshold voltage for turnon and turnoff (Zener voltage plus approximately one volt). If hysteresis is required, the circuit in Figure 17 has a turnon voltage which is different than the turnoff voltage. The amount of hysteresis is approximately equal to the value of the output voltage. If Zener voltages greater than 25 V are used, an additional $47-\mathrm{k} \Omega$ resistor is required from the $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin to the ground pin to stay within the $25-\mathrm{V}$ maximum limit of the $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin.

Figure 15. Undervoltage Lockout for Buck Regulator

8.3.3 Inverting Regulator

The circuit in Figure 18 converts a positive input voltage to a negative output voltage with a common ground. The circuit operates by bootstrapping the regulator's ground pin to the negative output voltage, then grounding the feedback pin, the regulator senses the inverted output voltage and regulates it.

This circuit has an $\overline{O N} / O F F$ threshold of approximately 13 V .
Figure 16. Undervoltage Lockout for Inverting Regulator

Feature Description (continued)

This example uses the LM2595 5-V version to generate a $-5-\mathrm{V}$ output, but other output voltages are possible by selecting other output voltage versions, including the adjustable version.
Because this regulator topology can produce an output voltage that is either greater than or less than the input voltage, the maximum output current greatly depends on both the input and output voltage. Figure 19 provides a guide as to the amount of output load current possible for the different input and output voltage conditions.
The maximum voltage appearing across the regulator is the absolute sum of the input and output voltage, and this must be limited to a maximum of 40 V . For example, when converting 20 V to -12 V , the regulator would see 32 V between the input pin and ground pin. The LM2595 has a maximum input voltage spec of 40 V .
Additional diodes are required in this regulator configuration. Diode D1 is used to isolate input voltage ripple or noise from coupling through the $\mathrm{C}_{\mathbb{I N}}$ capacitor to the output, under light or no load conditions. Also, this diode isolation changes the topology to closely resemble a buck configuration thus providing good closed loop stability. TI recommends a Schottky diode for low input voltages (because of its lower voltage drop), but for higher input voltages, a fast recovery diode could be used.
Without diode D3, when the input voltage is first applied, the charging current of $\mathrm{C}_{\mathbb{I N}}$ can pull the output positive by several volts for a short period of time. Adding D3 prevents the output from going positive by more than a diode voltage.

This circuit has hysteresis.
Regulator starts switching at $\mathrm{V}_{\mathrm{IN}}=13 \mathrm{~V}$
Regulator stops switching at $\mathrm{V}_{\mathrm{IN}}=8 \mathrm{~V}$
Figure 17. Undervoltage Lockout With Hysteresis For Inverting Regulator

$\mathrm{C}_{\mathrm{IN}}-220-\mu \mathrm{F}, 25-\mathrm{V}$ tantalum Sprague 595D
$120-\mu \mathrm{F}, 50-\mathrm{V}$ electrolytic Panasonic HFQ
Cout $^{\text {- } 22-\mu F, ~ 20-V ~ t a n t a l u m ~ S p r a g u e ~ 595 D ~}$
$120-\mu \mathrm{F}, 25-\mathrm{V}$ electrolytic Panasonic HFQ
Figure 18. Inverting -5-V Regulator With Delayed Start-Up

Feature Description (continued)

Figure 19. Inverting Regulator Typical Load Current
Because of differences in the operation of the inverting regulator, the standard design procedure is not used to select the inductor value. In the majority of designs, a $68-\mu \mathrm{H}, 1.5-\mathrm{A}$ inductor is the best choice. Capacitor selection is narrowed down to just a few values. Using the values shown in Figure 18 will provide good results in the majority of inverting designs.
This type of inverting regulator can require relatively large amounts of input current when starting up, even with light loads. Input currents as high as the LM2595 current limit (approximately 1.5 A) are required for at least 2 ms or more, until the output reaches its nominal output voltage. The actual time depends on the output voltage and the size of the output capacitor. Input power sources that are current limited or sources that can not deliver these currents without getting loaded down, may not work correctly. Because of the relatively high start-up currents required by the inverting topology, the delayed start-up feature ($\mathrm{C} 1, \mathrm{R}_{1}$ and R_{2}) shown in Figure 18 is recommended. By delaying the regulator start-up, the input capacitor is allowed to charge up to a higher voltage before the switcher begins operating. A portion of the high input current required for start-up is now supplied by the input capacitor ($\mathrm{C}_{\mathbb{I}}$). For severe start up conditions, the input capacitor can be made much larger than normal.

8.3.4 Inverting Regulator Shutdown Methods

Using the $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin in a standard buck configuration is simple. To turn the regulator ON, pull the $\overline{\mathrm{ON}} / \mathrm{OFF}$ pin below 1.3 V (at $25^{\circ} \mathrm{C}$ referenced to ground). To shut the regulator OFF, pull the ON/OFF pin above 1.3 V . With the inverting configuration, some level shifting is required, because the ground pin of the regulator is no longer at ground, but is now setting at the negative output voltage level. Two different shutdown methods for inverting regulators are shown in Figure 20 and Figure 21.

Figure 20. Inverting Regulator Ground Referenced Shutdown

Feature Description (continued)

Figure 21. Inverting Regulator Ground Referenced Shutdown Using Opto Device

8.4 Device Functional Modes

8.4.1 Discontinuous Mode Operation

The selection guide chooses inductor values suitable for continuous mode operation, but for low current applications or high input voltages, a discontinuous mode design may be a better choice. Discontinuous mode would use an inductor that would be physically smaller, and would need only one half to one third the inductance value required for a continuous mode design. The peak switch and inductor currents will be higher in a discontinuous design, but at these low load currents (400 mA and below), the maximum switch current will still be less than the switch current limit.

Discontinuous operation can have voltage waveforms that are considerably different than a continuous design. The output pin (switch) waveform can have some damped sinusoidal ringing present (see Typical Characteristics). This ringing is normal for discontinuous operation, and is not caused by feedback loop instabilities. In discontinuous operation, there is a period of time where neither the switch nor the diode are conducting, and the inductor current has dropped to zero. During this time, a small amount of energy can circulate between the inductor and the switch/diode parasitic capacitance causing this characteristic ringing. Normally this ringing is not a problem, unless the amplitude becomes great enough to exceed the input voltage, and even then, there is very little energy present to cause damage.

Different inductor types and/or core materials produce different amounts of this characteristic ringing. Ferrite core inductors have very little core loss and therefore produce the most ringing. The higher core loss of powdered iron inductors produce less ringing. If desired, a series RC could be placed in parallel with the inductor to dampen the ringing.

Figure 22. Post Ripple Filter Waveform

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the Tl component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

9.1.1 Input Capacitor (C_{IN})

A low ESR aluminum or tantalum bypass capacitor is required between the input pin and ground pin. The capacitor must be placed near the regulator using short leads. This capacitor prevents large voltage transients from appearing at the input, and provides the instantaneous current required each time the switch turns on.
The important parameters for the Input capacitor are the voltage rating and the RMS current rating. Because of the relatively high RMS currents flowing in a buck regulator's input capacitor, this capacitor must be chosen for its RMS current rating rather than its capacitance or voltage ratings, although the capacitance value and voltage rating are directly related to the RMS current rating.
The RMS current rating of a capacitor could be viewed as a capacitor's power rating. The RMS current flowing through the capacitors internal ESR produces power which causes the internal temperature of the capacitor to rise. The RMS current rating of a capacitor is determined by the amount of current required to raise the internal temperature approximately $10^{\circ} \mathrm{C}$ above an ambient temperature of $105^{\circ} \mathrm{C}$. The ability of the capacitor to dissipate this heat to the surrounding air will determine the amount of current the capacitor can safely sustain. Capacitors that are physically large and have a large surface area will typically have higher RMS current ratings. For a given capacitor value, a higher voltage electrolytic capacitor will be physically larger than a lower voltage capacitor, and thus be able to dissipate more heat to the surrounding air, and therefore will have a higher RMS current rating.
The consequences of operating an electrolytic capacitor above the RMS current rating is a shortened operating life. The higher temperature speeds up the evaporation of the capacitor's electrolyte, resulting in eventual failure.
Selecting an input capacitor requires consulting the manufacturer's data sheet for maximum allowable RMS ripple current. For a maximum ambient temperature of $40^{\circ} \mathrm{C}$, a general guideline would be to select a capacitor with a ripple current rating of approximately 50% of the DC load current. For ambient temperatures up to $70^{\circ} \mathrm{C}$, a current rating of 75% of the DC load current would be a good choice for a conservative design. The capacitor voltage rating must be at least 1.25 times greater than the maximum input voltage, and often a much higher voltage capacitor is required to satisfy the RMS current requirements.
Figure 23 shows the relationship between an electrolytic capacitor value, its voltage rating, and the RMS current it is rated for. These curves were obtained from the Nichicon PL series of low-ESR, high-reliability electrolytic capacitors designed for switching regulator applications. Other capacitor manufacturers offer similar types of capacitors, but always check the capacitor data sheet.
Standard electrolytic capacitors typically have much higher ESR numbers, lower RMS current ratings and typically have a shorter operating lifetime.
Because of their small size and excellent performance, surface-mount solid tantalum capacitors are often used for input bypassing, but several precautions must be observed. A small percentage of solid tantalum capacitors can short if the inrush current rating is exceeded. This can happen at turnon when the input voltage is suddenly applied, and of course, higher input voltages produce higher inrush currents. Several capacitor manufacturers do a 100% surge current testing on their products to minimize this potential problem. If high turn on currents are expected, it may be necessary to limit this current by adding either some resistance or inductance before the tantalum capacitor, or select a higher voltage capacitor. As with aluminum electrolytic capacitors, the RMS ripple current rating must be sized to the load current.

Application Information (continued)

9.1.2 Feedforward Capacitor ($C_{F F}$) for Adjustable Output Voltage Version Only

A feedforward capacitor, C_{FF}, shown across R 2 in Table 1 is used when the output voltage is greater than 10 V or when $\mathrm{C}_{\text {out }}$ has a very low ESR. This capacitor adds lead compensation to the feedback loop and increases the phase margin for better loop stability.

Figure 23. RMS Current Ratings for Low ESR Electrolytic Capacitors (Typical)

9.1.3 Output Capacitor (Cout)

An output capacitor is required to filter the output and provide regulator loop stability. Low impedance or low ESR Electrolytic or solid tantalum capacitors designed for switching regulator applications must be used. When selecting an output capacitor, the important capacitor parameters are the $100-\mathrm{kHz}$ Equivalent Series Resistance (ESR), the RMS ripple current rating, voltage rating, and capacitance value. For the output capacitor, the ESR value is the most important parameter.
The output capacitor requires an ESR value that has an upper and lower limit. For low output ripple voltage, a low ESR value is required. This value is determined by the maximum allowable output ripple voltage, typically 1% to 2% of the output voltage. But if the selected capacitor's ESR is extremely low, there is a possibility of an unstable feedback loop, resulting in an oscillation at the output. Using the capacitors listed in the tables, or similar types, will provide design solutions under all conditions.
If very low output ripple voltage (less than 15 mV) is required, see Output Voltage Ripple and Transients for a post ripple filter.
An aluminum electrolytic capacitor's ESR value is related to the capacitance value and its voltage rating. In most cases, higher voltage electrolytic capacitors have lower ESR values (see Figure 24). Often, capacitors with much higher voltage ratings may be required to provide the low ESR values required for low output ripple voltage.
The output capacitor for many different switcher designs often can be satisfied with only three or four different capacitor values and several different voltage ratings. See Table 5 and Table 7 for typical capacitor values, voltage ratings, and manufacturer's capacitor types.
Electrolytic capacitors are not recommended for temperatures below $-25^{\circ} \mathrm{C}$. The ESR rises dramatically at cold temperatures and typically rises 3 X at $-25^{\circ} \mathrm{C}$ and as much as 10 X at $-40^{\circ} \mathrm{C}$ (see Figure 25).
Solid tantalum capacitors have a much better ESR specifications for cold temperatures and are recommended for temperatures below $-25^{\circ} \mathrm{C}$.

Application Information (continued)

Figure 24. Capacitor ESR vs Capacitor Voltage Rating (Typical Low ESR Electrolytic Capacitor)

Table 1. Output Capacitor and Feedforward Capacitor Selection Table

OUTPUT VOLTAGE (\mathbf{V})	THROUGH-HOLE OUTPUT CAPACITOR		SURFACE-MOUNT OUTPUT CAPACITOR			
	PANASONIC HFQ SERIES $(\boldsymbol{\mu F} / \mathbf{V})$	NICHICON PL SERIES $(\boldsymbol{\mu F} / \mathbf{V})$	FEEDFORWARD CAPACITOR	AVX TPS SERIES $(\boldsymbol{\mu F} / \mathbf{V})$	SPRAGUE 595D SERIES $(\boldsymbol{\mu F} / \mathbf{V})$	FEEDFORWARD CAPACITOR
9	$180 / 25$	$180 / 25$	1.5 nF	$100 / 16$	$180 / 16$	1.5 nF
12	$120 / 25$	$120 / 25$	1.5 nF	$68 / 20$	$120 / 20$	1.5 nF
15	$120 / 25$	$120 / 25$	1.5 nF	$68 / 20$	$100 / 20$	1.5 nF
24	$82 / 35$	$82 / 35$	1 nF	$33 / 25$	$33 / 35$	220 pF
28	$82 / 50$	$82 / 50$	1 nF	$10 / 35$	$33 / 35$	220 pF

9.1.4 Catch Diode

Buck regulators require a diode to provide a return path for the inductor current when the switch turns off. This must be a fast diode and must be placed close to the LM2595 using short leads and short printed circuit traces.
Because of their very fast switching speed and low forward voltage drop, Schottky diodes provide the best performance, especially in low output voltage applications (5 V and lower). Ultra-fast recovery, or high-efficiency rectifiers are also a good choice, but some types with an abrupt turnoff characteristic may cause instability or EMI problems. Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. Rectifiers such as the 1 N5400 series are much too slow and must not be used.

Figure 25. Capacitor ESR Change vs Temperature

Table 2. Diode Selection Table

VR	1-A DIODES				3-A DIODES			
	SURFACE MOUNT		THROUGH HOLE		SURFACE MOUNT		THROUGH HOLE	
	SCHOTTKY	ULTRA FAST RECOVERY						
20 V	SK12	All of these diodes are rated to at least 50 V	1N5817	All of these diodes are rated to at least 50 V		All of these diodes are rated to at least 50 V	1N5820	All of these diodes are rated to at least 50 V
			SR102		SK32		SR302	
							MBR320	
30 V	SK13		1N5818				1N5821	
	MBRS130		SR103		SK33		MBR330	
			11DQ03				31DQ03	
	SK14						1N5822	
40 V	MBRS140		1N5819		SK34		SR304	
	10BQ040		SR104		MBRS340		MBR340	
	10MQ040	MURS120	11DQ04	MUR120	30WQ04	MURS320	31DQ04	MUR320
50 V	MBRS160	10BF10	SR105		SK35	30WF10	SR305	30WF10
or	10BQ050		MBR150		MBR360		MBR350	
More	10MQ060		11DQ05		30WQ05		31DQ05	

9.1.5 Inductor Selection

All switching regulators have two basic modes of operation: continuous and discontinuous. The difference between the two types relates to the inductor current, whether it is flowing continuously, or if it drops to zero for a period of time in the normal switching cycle. Each mode has distinctively different operating characteristics, which can affect the regulators performance and requirements. Most switcher designs will operate in the discontinuous mode when the load current is low.

The LM2595 (or any of the Simple Switcher family) can be used for both continuous or discontinuous modes of operation.
In many cases the preferred mode of operation is the continuous mode. This mode offers greater output power, lower peak switch, inductor and diode currents, and can have lower output ripple voltage. However, the continuous mode requires larger inductor values to keep the inductor current flowing continuously, especially at low output load currents and/or high input voltages.
To simplify the inductor selection process, an inductor selection guide (nomograph) was designed (see Figure 27 through Figure 30). This guide assumes that the regulator is operating in the continuous mode, and selects an inductor that will allow a peak-to-peak inductor ripple current to be a certain percentage of the maximum design load current. This peak-to-peak inductor ripple current percentage is not fixed, but is allowed to change as different design load currents are selected. (See Figure 26.)

Figure 26. $\Delta \mathrm{I}_{\mathrm{IND}}$, Peak-to-Peak Inductor Ripple Current (as a Percentage of the Load Current) vs Load Current

By allowing the percentage of inductor ripple current to increase for low load currents, the inductor value and size can be kept relatively low.
When operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage), with the average value of this current waveform equal to the DC output load current.
Inductors are available in different styles such as pot core, toroid, E-core, bobbin core, and so forth, as well as different core materials, such as ferrites and powdered iron. The least expensive, the bobbin, rod or stick core, consists of wire wound on a ferrite bobbin. This type of construction makes for an inexpensive inductor; however, because the magnetic flux is not completely contained within the core, it generates more Electro-Magnetic Interference (EMI). This magnetic flux can induce voltages into nearby printed circuit traces, thus causing problems with both the switching regulator operation and nearby sensitive circuitry, and can give incorrect scope readings because of induced voltages in the scope probe (see Open Core Inductors).

When multiple switching regulators are placed on the same PCB, open core magnetics can cause interference between two or more of the regulator circuits, especially at high currents. A toroid or E-core inductor (closed magnetic structure) must be used in these situations.
The inductors listed in the selection chart include ferrite E-core construction for Schott, ferrite bobbin core for Renco and Coilcraft, and powdered iron toroid for Pulse Engineering.
Exceeding an inductor's maximum current rating may cause the inductor to overheat because of the copper wire losses, or the core may saturate. If the inductor begins to saturate, the inductance decreases rapidly and the inductor begins to look mainly resistive (the DC resistance of the winding). This can cause the switch current to rise very rapidly and force the switch into a cycle-by-cycle current limit, thus reducing the DC output load current. This can also result in overheating of the inductor and/or the LM2595. Different inductor types have different saturation characteristics, and this must be kept in mind when selecting an inductor.

The inductor manufacturer's data sheets include current and energy limits to avoid inductor saturation.
For continuous mode operation, see the inductor selection graphs in Figure 27 through Figure 30

MAXIMUM LOAD CURRENT (A)
Figure 29. LM2595 12-V

MAXIMUM LOAD CURRENT (A)
Figure 30. LM2595 Adjustable Voltage

Table 3. Inductor Manufacturer's Part Numbers

	INDUCTANCE $(\mu \mathrm{H})$	CURRENT (A)	RENCO		PULSE ENGINEERING		COILCRAFT
			THROUGH HOLE	SURFACE MOUNT	THROUGH HOLE	SURFACE MOUNT	SURFACE MOUNT
L4	68	0.32	RL-1284-68-43	RL1500-68	PE-53804	PE-53804-S	DO1608-68
L5	47	0.37	RL-1284-47-43	RL1500-47	PE-53805	PE-53805-S	DO1608-473
L6	33	0.44	RL-1284-33-43	RL1500-33	PE-53806	PE-53806-S	DO1608-333
L9	220	0.32	RL-5470-3	RL1500-220	PE-53809	PE-53809-S	DO3308-224
L10	150	0.39	RL-5470-4	RL1500-150	PE-53810	PE-53810-S	DO3308-154
L11	100	0.48	RL-5470-5	RL1500-100	PE-53811	PE-53811-S	DO3308-104
L12	68	0.58	RL-5470-6	RL1500-68	PE-53812	PE-53812-S	DO3308-683
L13	47	0.70	RL-5470-7	RL1500-47	PE-53813	PE-53813-S	DO3308-473
L14	33	0.83	RL-1284-33-43	RL1500-33	PE-53814	PE-53814-S	DO3308-333
L15	22	0.99	RL-1284-22-43	RL1500-22	PE-53815	PE-53815-S	DO3308-223
L16	15	1.24	RL-1284-15-43	RL1500-15	PE-53816	PE-53816-S	DO3308-153
L17	330	0.42	RL-5471-1	RL1500-330	PE-53817	PE-53817-S	DO3316-334
L18	220	0.55	RL-5471-2	RL1500-220	PE-53818	PE-53818-S	DO3316-224
L19	150	0.66	RL-5471-3	RL1500-150	PE-53819	PE-53819-S	DO3316-154
L20	100	0.82	RL-5471-4	RL1500-100	PE-53820	PE-53820-S	DO3316-104
L21	68	0.99	RL-5471-5	RL1500-68	PE-53821	PE-53821-S	DO3316-683
L22	47	1.17	RL-5471-6	-	PE-53822	PE-53822-S	DO3316-473
L23	33	1.40	RL-5471-7	-	PE-53823	PE-53823-S	DO3316-333
L24	22	1.70	RL-1283-22-43	-	PE-53824	PE-53824-S	DO3316-223
L26	330	0.80	RL-5471-1	-	PE-53826	PE-53826-S	DO5022P-334
L27	220	1.00	RL-5471-2	-	PE-53827	PE-53827-S	DO5022P-224
L28	150	1.20	RL-5471-3	-	PE-53828	PE-53828-S	DO5022P-154
L29	100	1.47	RL-5471-4	-	PE-53829	PE-53829-S	DO5022P-104
L30	68	1.78	RL-5471-5	-	PE-53830	PE-53830-S	DO5022P-683
L35	47	2.15	RL-5473-1	-	PE-53935	PE-53935-S	-

9.1.6 Output Voltage Ripple and Transients

The output voltage of a switching power supply operating in the continuous mode will contain a sawtooth ripple voltage at the switcher frequency, and may also contain short voltage spikes at the peaks of the sawtooth waveform.

The output ripple voltage is a function of the inductor sawtooth ripple current and the ESR of the output capacitor. A typical output ripple voltage can range from approximately 0.5% to 3% of the output voltage. To obtain low ripple voltage, the ESR of the output capacitor must be low; however, caution must be exercised when using extremely low ESR capacitors because they can affect the loop stability, resulting in oscillation problems. If very low output ripple voltage is required (less than 20 mV), TI recommends a post ripple filter (see Figure 32). The inductance required is typically between $1 \mu \mathrm{H}$ and $5 \mu \mathrm{H}$, with low DC resistance, to maintain good load regulation. A low ESR output filter capacitor is also required to assure good dynamic load response and ripple reduction. The ESR of this capacitor may be as low as desired, because it is out of the regulator feedback loop. Figure 22 shows a typical output ripple voltage, with and without a post ripple filter.

When observing output ripple with a scope, it is essential that a short, low inductance scope probe ground connection be used. Most scope probe manufacturers provide a special probe terminator which is soldered onto the regulator board, preferably at the output capacitor. This provides a very short scope ground, thus eliminating the problems associated with the 3 inch ground lead normally provided with the probe, and provides a much cleaner and more accurate picture of the ripple voltage waveform.
The voltage spikes are caused by the fast switching action of the output switch and the diode, the parasitic inductance of the output filter capacitor, and its associated wiring. To minimize these voltage spikes, the output capacitor must be designed for switching regulator applications, and the lead lengths must be kept very short. Wiring inductance, stray capacitance, as well as the scope probe used to evaluate these transients, all contribute to the amplitude of these spikes.
When a switching regulator is operating in the continuous mode, the inductor current waveform ranges from a triangular to a sawtooth type of waveform (depending on the input voltage). For a given input and output voltage, the peak-to-peak amplitude of this inductor current waveform remains constant. As the load current increases or decreases, the entire sawtooth current waveform also rises and falls. The average value (or the center) of this current waveform is equal to the DC load current.
If the load current drops to a low enough level, the bottom of the sawtooth current waveform will reach zero, and the switcher will smoothly change from a continuous to a discontinuous mode of operation. Most switcher designs (regardless how large the inductor value is) will be forced to run discontinuous if the output is lightly loaded. This is a perfectly acceptable mode of operation.

Figure 31. Peak-to-Peak Inductor Ripple Current vs Load Current

In a switching regulator design, knowing the value of the peak-to-peak inductor ripple current ($\Delta \mathrm{l}_{\mathrm{ND}}$) can be useful for determining a number of other circuit parameters. Parameters such as, peak inductor or peak switch current, minimum load current before the circuit becomes discontinuous, output ripple voltage and output capacitor ESR can all be calculated from the peak-to-peak $\Delta I_{\text {IND }}$. When the inductor nomographs shown in Figure 27 through Figure 30 are used to select an inductor value, the peak-to-peak inductor ripple current can immediately be determined. Figure 31 shows the range of ($\Delta \mathrm{I}_{\mathrm{IND}}$) that can be expected for different load currents. Figure 31 also shows how the peak-to-peak inductor ripple current ($\Delta \boldsymbol{I}_{\text {IND }}$) changes from the lower border to the upper border (for a given load current) within an inductance region. The upper border represents a higher input voltage, while the lower border represents a lower input voltage (see Inductor Selection).
These curves are only correct for continuous mode operation, and only if the inductor selection guides are used to select the inductor value

Consider the following example:
$\mathrm{V}_{\text {OUT }}=5 \mathrm{~V}$, maximum load current of 800 mA
$\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ (nominal) varying between 10 V and 14 V
The selection guide in Figure 28 shows that the vertical line for a 0.8 -A load current and the horizontal line for the $12-\mathrm{V}$ input voltage intersect approximately midway between the upper and lower borders of the $68-\mu \mathrm{H}$ inductance region. A $68-\mu \mathrm{H}$ inductor allows a peak-to-peak inductor current ($\Delta \mathrm{I}_{\mathrm{IND}}$) to flow as a percentage of the maximum load current. Referring to Figure 31, follow the 0.8-A line approximately midway into the inductance region, and read the peak-to-peak inductor ripple current ($\Delta \mathrm{I}_{\mathrm{IND}}$) on the left hand axis (approximately $300 \mathrm{~mA}_{\rho-\mathrm{p}}$).
As the input voltage increases to 14 V , it approaches the upper border of the inductance region, and the inductor ripple current increases. Figure 31 shows that for a load current of 0.8 A , the peak-to-peak inductor ripple current $\left(\Delta \mathrm{I}_{\mathrm{IND}}\right)$ is 300 mA with $12-\mathrm{V}$ in, and can range from 340 mA at the upper border ($14-\mathrm{V} \mathrm{in}$) to 225 mA at the lower border ($10-\mathrm{V}$ in).
Once the $\Delta I_{\mathbb{N D}}$ value is known, the following formulas can be used to calculate additional information about the switching regulator circuit.

1. Peak Inductor or peak switch current
2. Minimum load current before the circuit becomes discontinuous $=\frac{\Delta l_{\text {lND }}}{2}=\frac{0.3}{2}=0.15 \mathrm{~A}$
3. Output Ripple Voltage $=\left(\Delta I_{\text {IND }}\right) \times\left(E S R\right.$ of $\left.C_{\text {OUT }}\right)$

$$
=0.30 \mathrm{~A} \times 0.16 \Omega=48 \mathrm{mV}_{\mathrm{p}-\mathrm{p}}
$$

4. ESR of $\mathrm{C}_{\text {OUt }}$
$=\frac{\text { Output Ripple Voltage (} \Delta V_{\text {OUT }} \text {) }}{\Delta I_{\text {IND }}}$
$=\frac{0.048 \mathrm{~V}}{0.30 \mathrm{~A}}=0.16 \Omega$

9.1.7 Open Core Inductors

Another possible source of increased output ripple voltage or unstable operation is from an open core inductor. Ferrite bobbin or stick inductors have magnetic lines of flux flowing through the air from one end of the bobbin to the other end. These magnetic lines of flux will induce a voltage into any wire or PCB copper trace that comes within the inductor's magnetic field. The strength of the magnetic field, the orientation and location of the PC copper trace to the magnetic field, and the distance between the copper trace and the inductor determine the amount of voltage generated in the copper trace. Another way of looking at this inductive coupling is to consider the PCB copper trace as one turn of a transformer (secondary) with the inductor winding as the primary. Many millivolts can be generated in a copper trace placed near an open core inductor, which can cause stability problems or high output ripple voltage problems.
If unstable operation is seen, and an open core inductor is used, it is possible that the location of the inductor with respect to other PC traces may be the problem. To determine if this is the problem, temporarily raise the inductor away from the board by several inches and then check circuit operation. If the circuit now operates correctly, then the magnetic flux from the open core inductor is causing the problem. Substituting a closed core inductor such as a torroid or E-core will correct the problem, or re-arranging the PC layout may be necessary. Magnetic flux cutting the IC device ground trace, feedback trace, or the positive or negative traces of the output capacitor must be minimized.
Sometimes, placing a trace directly beneath a bobbin inductor will provide good results, provided it is exactly in the center of the inductor (because the induced voltages cancel themselves out). However, if the trace is off center, then problems could arise. If flux problems are present, even the direction of the inductor winding can make a difference in some circuits.
This discussion on open core inductors is not to frighten users, but to alert them on what kind of problems to watch out for. Open core bobbin or stick inductors are an inexpensive, simple way of making a compact, efficient inductor, and they are used by the millions in many different applications.

9.2 Typical Applications

9.2.1 Series Buck Regulator (Fixed Output)

$\mathrm{C}_{\mathrm{IN}}-120-\mu \mathrm{F}, 50-\mathrm{V}$, aluminum electrolytic Nichicon, PL Series Cout - $120-\mu \mathrm{F}, 25-\mathrm{V}$ aluminum electrolytic Nichicon, PL Series D1 - 3-A, 40-V Schottky rectifier, 1N5822
L1 - $100-\mu \mathrm{H}, \mathrm{L} 29$
Figure 32. Fixed Output Voltage Versions

9.2.1.1 Design Requirements

Table 4 lists the parameters for this design example.
Table 4. Example Parameters

PARAMETER	EXAMPLE VALUE
Regulated output voltage $(3.3 \mathrm{~V}, 5 \mathrm{~V}$ or 12 V$), \mathrm{V}_{\text {OUT }}$	5 V
Maximum DC input voltage, $\mathrm{V}_{\text {IN }}(\max)$	12 V
Maximum load current, $\mathrm{I}_{\text {LOAD }}(\max)$	1 A

9.2.1.2 Detailed Design Procedure

9.2.1.2.1 Inductor Selection (L1)

1. Select the correct inductor value selection guide from Figure 27, Figure 28, or Figure 29 (output voltages of $3.3 \mathrm{~V}, 5 \mathrm{~V}$, or 12 V respectively).
Use the inductor selection guide for the 5-V version shown in Figure 28.
2. From the inductor value selection guide, identify the inductance region intersected by the maximum input voltage line and the maximum load current line. Each region is identified by an inductance value and an inductor code (LXX).
From the inductor value selection guide shown in Figure 28, the inductance region intersected by the 12-V horizontal line and the $1-\mathrm{A}$ vertical line is $68 \mu \mathrm{H}$, and the inductor code is L30.
3. Select an appropriate inductor from the manufacturer's part numbers listed in Table 3.

The inductance value required is $68 \mu \mathrm{H}$. See row L30 of Table 3 and choose an inductor part number from any of the manufactures (in most instance, both through-hole and surface-mount inductors are available).

9.2.1.2.2 Output Capacitor Selection (C $\mathrm{C}_{\text {out }}$)

1. In the majority of applications, low ESR (Equivalent Series Resistance) electrolytic capacitors between $47 \mu \mathrm{~F}$ and $330 \mu \mathrm{~F}$ and low ESR solid tantalum capacitors between $56 \mu \mathrm{~F}$ and $270 \mu \mathrm{~F}$ provide the best results. This capacitor must be placed close to the IC using short capacitor leads and short copper traces. Do not use capacitors larger than $330 \mu \mathrm{~F}$.
2. To simplify the capacitor selection procedure, see Table 5 for quick design component selection. This table contains different input voltages, output voltages, and load currents, and lists various inductors and output
capacitors that will provide the best design solutions.
From Table 5, place the 5-V output voltage section. In the load current column, choose the load current line that is closest to the current required in the application; for this example, use the 1-A line. In the maximum input voltage column, select the line that covers the input voltage required in the application; in this example, use the $15-\mathrm{V}$ line. The rest of this line shows the recommended inductors and capacitors that will provide the best overall performance.
The capacitor list contains both through-hole electrolytic and surface-mount tantalum capacitors from four different capacitor manufacturers. TI recommends using both the manufacturers and the manufacturer's series listed in Table 5.
In this example, aluminum electrolytic capacitors from several different manufacturers are available with the range of ESR numbers required:

- 220- μ F, 25-V Panasonic HFQ Series
- $220-\mu \mathrm{F}, 25-\mathrm{V}$ Nichicon PL Series

3. The capacitor voltage rating for electrolytic capacitors must be at least 1.5 times greater than the output voltage, and often much higher voltage ratings are required to satisfy the low ESR requirements for low output ripple voltage.
For a 5-V output, a capacitor voltage rating at least 7.5 V or more is required. But, in this example, even a low ESR, switching grade, $220-\mu \mathrm{F}, 10-\mathrm{V}$ aluminum electrolytic capacitor would exhibit approximately $225 \mathrm{~m} \Omega$ of ESR (see Figure 24 for the ESR versus voltage rating). This amount of ESR would result in relatively high output ripple voltage. To reduce the ripple to 1% of the output voltage, or less, a capacitor with a higher voltage rating (lower ESR) must be selected. A $16-\mathrm{V}$ or $25-\mathrm{V}$ capacitor will reduce the ripple voltage by approximately half.

9.2.1.2.3 Catch Diode Selection (D1)

1. The catch diode current rating must be at least 1.3 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode must have a current rating equal to the maximum current limit of the LM2595. The most stressful condition for this diode is an overload or shorted output condition.
See Table 2. In this example, a 3-A, 20-V, 1N5820 Schottky diode will provide the best performance, and will not be overstressed even for a shorted output.
2. The reverse voltage rating of the diode must be at least 1.25 times the maximum input voltage.
3. This diode must be fast (short reverse recovery time) and must be placed close to the LM2595 using short leads and short printed circuit traces. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency, and must be the first choice, especially in low output voltage applications. Ultra-fast recovery, or high-efficiency rectifiers also provide good results. Ultrafast recovery diodes typically have reverse recovery times of 50 ns or less. Rectifiers such as the 1N5400 series must not be used because they are too slow.

9.2.1.2.4 Input Capacitor ($\mathrm{C}_{\text {IN }}$)

A low ESR aluminum or tantalum bypass capacitor is required between the input pin and ground pin to prevent large voltage transients from appearing at the input. This capacitor must be placed close to the IC using short leads. In addition, the RMS current rating of the input capacitor must be selected to be at least $1 / 2$ the DC load current. The capacitor manufacturer's data sheet must be checked to assure that this current rating is not exceeded. Figure 23 shows typical RMS current ratings for several different aluminum electrolytic capacitor values.
The important parameters for the input capacitor are the input voltage rating and the RMS current rating. With a nominal input voltage of 12 V , an aluminum electrolytic capacitor with a voltage rating greater than 18 V $\left(1.5 \times \mathrm{V}_{\mathrm{IN}}\right)$ is necessary. The next higher capacitor voltage rating is 25 V .

For an aluminum electrolytic, the capacitor voltage rating must be approximately 1.5 times the maximum input voltage. Exercise caution if solid tantalum capacitors are used (see Input Capacitor ($C_{I N}$) on input capacitor). The tantalum capacitor voltage rating must be 2 times the maximum input voltage and TI recommends that they be surge current tested by the manufacturer.

The RMS current rating requirement for the input capacitor in a buck regulator is approximately $1 / 2$ the DC load current. In this example, with a 1-A load, a capacitor with a RMS current rating of at least 500 mA is required. Figure 23 can be used to select an appropriate input capacitor. From the curves, place the $25-\mathrm{V}$ line and note which capacitor values have RMS current ratings greater than 500 mA . Either a $180-\mu \mathrm{F}$ or $220-\mu \mathrm{F}, 25-\mathrm{V}$ capacitor could be used.
Use caution when using ceramic capacitors for input bypassing, because it may cause severe ringing at the $\mathrm{V}_{\mathbb{I N}}$ pin.
For a through-hole design, a $220-\mu$ F, 25-V electrolytic capacitor (Panasonic HFQ series or Nichicon PL series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate.
For surface-mount designs, solid tantalum capacitors can be used, but exercise caution with regard to the capacitor surge current rating (see Input Capacitor ($C_{I N}$) on input capacitors). The TPS series available from AVX, and the 593D series from Sprague are both surge current tested.

Table 5. LM2595 Fixed Voltage Quick Design Component Selection Table

CONDITIONS			INDUCTOR		OUTPUT CAPACITOR					
			THROUGH-HOLE ELECTROLYTIC	SURFACE-MOUNT TANTALUM						
OUTPUT VOLTAGE (V)	$\begin{aligned} & \text { LOAD } \\ & \text { CURREN } \\ & \mathrm{T}(\mathrm{~A}) \end{aligned}$	MAX INPUT VOLTAGE (V)			$\underset{(\mu \mathrm{H})}{\text { INDUCTANCE }}$	INDUCTOR (\#)	PANASONIC HFQ SERIES ($\mu \mathrm{F} / \mathrm{V}$)	$\begin{aligned} & \text { NICHICON PL } \\ & \text { SERIES } \\ & (\mu \mathrm{F} / \mathrm{V}) \end{aligned}$	AVX TPS SERIES ($\mu \mathrm{F} / \mathrm{V}$)	SPRAGUE 595D SERIES $(\mu \mathrm{F} / \mathrm{V})$
3.3	1	5	22	L24	330/16	330/16	220/10	330/10		
		7	33	L23	270/25	270/25	220/10	270/10		
		10	47	L31	220/25	220/35	220/10	220/10		
		40	68	L30	180/35	220/35	220/10	180/10		
		6	47	L13	220/25	220/16	220/10	220/10		
	0.5	10	68	L21	150/35	150/25	100/16	150/16		
		40	100	L20	150/35	82/35	100/16	100/20		
5	1	8	33	L28	330/16	330/16	220/10	270/10		
		10	47	L31	220/25	220/25	220/10	220/10		
		15	68	L30	180/35	180/35	220/10	150/16		
		40	100	L29	180/35	120/35	100/16	120/16		
		9	68	L21	180/16	180/16	220/10	150/16		
	0.5	20	150	L19	120/25	1200/25	100/16	100/20		
		40	150	L19	100/25	100/25	68/20	68/25		
12	1	15	47	L31	220/25	220/25	68/20	120/20		
		18	68	L30	180/35	120/25	68/20	120/20		
		30	150	L36	82/25	82/25	68/20	100/20		
		40	220	L35	82/25	82/25	68/20	68/25		
		15	68	L21	180/25	180/25	68/20	120/20		
	0.5	20	150	L19	82/25	82/25	68/20	100/20		
		40	330	L26	56/25	56/25	68/20	68/25		

9.2.1.3 Application Curves

9.2.2 Series Buck Regulator (Adjustable Output)


```
    \(V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R_{2}}{R_{1}}\right) \quad\) where \(V_{\text {REF }}=1.23 V\)
    \(R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right) \quad \begin{aligned} & \text { Select } R_{1} \text { to be approximately } 1 \mathrm{k} \Omega, \\ & \text { use a } 1 \% \text { resistor for best stability. }\end{aligned}\)
    \(\mathrm{C}_{\mathrm{IN}}-120-\mu \mathrm{F}, 50-\mathrm{V}\) aluminum electrolytic Nichicon, PL Series
```

Cout - $120-\mu \mathrm{F}, 25-\mathrm{V}$ aluminum electrolytic Nichicon, PL Series
D1 - 3-A, 40-V Schottky rectifier, 1N5822
L1 - $100-\mu \mathrm{H}$, L29
$\mathrm{R}_{1}-1-\mathrm{k} \Omega, 1 \%$
C_{FF} - See Feedforward Capacitor ($C_{\text {FF }}$)
Figure 35. Adjustable Output Voltage Versions

9.2.2.1 Design Requirements

Table 6 lists the parameters for this design example.

Table 6. Example Parameters

PARAMETER	EXAMPLE VALUE
Regulated output voltage, $\mathrm{V}_{\text {OUT }}$	20 V
Maximum input voltage, $\mathrm{V}_{\mathrm{IN}}(\max)$	28 V
Maximum load current, $\mathrm{I}_{\text {LOAD }}(\max)$	1 A
Switching frequency, F	Fixed at a nominal 150 kHz

9.2.2.2 Detailed Design Procedure

9.2.2.2.1 Programming Output Voltage

Select the R_{1} and R_{2}.
Use Equation 1 to select the appropriate resistor values.

$$
\begin{equation*}
V_{\text {OUT }}=V_{\text {REF }}\left(1+\frac{R_{2}}{R_{1}}\right) \text { where } V_{\text {REF }}=1.23 \mathrm{~V} \tag{1}
\end{equation*}
$$

Select a value for R_{1} between 240Ω and $1.5 \mathrm{k} \Omega$ in Equation 2. The lower resistor values minimize noise pickup in the sensitive feedback pin (for the lowest temperature coefficient and the best stability with time, use 1% metal film resistors).

$$
\begin{equation*}
R_{2}=R_{1}\left(\frac{V_{\text {OUT }}}{V_{\text {REF }}}-1\right) \tag{2}
\end{equation*}
$$

Select R_{1} to be $1 \mathrm{k} \Omega, 1 \%$. Solve for R_{2} in Equation 3.

$$
\begin{equation*}
\mathrm{R}_{2}=\mathrm{R}_{1}\left(\frac{\mathrm{~V}_{\text {OUT }}}{\mathrm{V}_{\text {REF }}}-1\right)=1 \mathrm{k}\left(\frac{20 \mathrm{~V}}{1.23 \mathrm{~V}}-1\right) \tag{3}
\end{equation*}
$$

$R_{2}=1 \mathrm{k}(16.26-1)=15.26 \mathrm{k}$, closest 1% value is $15.4 \mathrm{k} \Omega$.
$\mathrm{R}_{2}=15.4 \mathrm{k} \Omega$.

9.2.2.2.2 Inductor Selection (L1)

1. Calculate the inductor Volt • microsecond constant $\mathrm{E} \cdot \mathrm{T}(\mathrm{V} \cdot \mu \mathrm{s})$ with Equation 4.

$$
E \cdot T=\left(V_{I N}-V_{O U T}-V_{S A T}\right) \cdot \frac{V_{O U T}+V_{D}}{V_{I N}-V_{S A T}+V_{D}} \bullet \frac{1000}{150 \mathrm{kHz}}(V \cdot \mu \mathrm{~S})
$$

where

- $\mathrm{V}_{\text {SAT }}=$ internal switch saturation voltage $=1 \mathrm{~V}$
- and $\mathrm{V}_{\mathrm{D}}=$ diode forward voltage drop $=0.5 \mathrm{~V}$

Calculate the inductor Volt • microsecond constant ($\mathrm{E} \cdot \mathrm{T}$) with Equation 5.

$$
\begin{gather*}
E \bullet T=(28-20-1) \bullet \frac{20+0.5}{28-1+0.5} \bullet \frac{1000}{150}(V \bullet \mu \mathrm{~s}) \\
E \bullet T=(7) \bullet \frac{20.5}{27.5} \bullet 6.67(V \bullet \mu \mathrm{~s})=34.8(\mathrm{~V} \bullet \mu \mathrm{~s}) \tag{5}
\end{gather*}
$$

2. Use the $\mathrm{E} \cdot \mathrm{T}$ value from the previous formula and match it with the $\mathrm{E} \cdot \mathrm{T}$ number on the vertical axis of the Inductor Value Selection Guide shown in Figure 30.
$\mathrm{E} \cdot \mathrm{T}=34.8(\mathrm{~V} \cdot \mu \mathrm{~s})$
3. On the horizontal axis, select the maximum load current.
$\mathrm{I}_{\text {LOAD }}(\max)=1 \mathrm{~A}$
4. Identify the inductance region intersected by the E•T value and the Maximum Load Current value. Each region is identified by an inductance value and an inductor code (LXX).
From the inductor value selection guide shown in Figure 30, the inductance region intersected by the 35 (V • $\mu \mathrm{s}$) horizontal line and the 1-A vertical line is $100 \mu \mathrm{H}$, and the inductor code is L29.
5. Select an appropriate inductor from the manufacturers' part numbers listed in Table 3.

From the table in Table 3, place line L29, and select an inductor part number from the list of manufacturers' part numbers.

9.2.2.2.3 Output Capacitor Selection ($\mathrm{C}_{\text {OUT }}$)

1. In the majority of applications, low ESR electrolytic or solid tantalum capacitors between $47 \mu \mathrm{~F}$ and $330 \mu \mathrm{~F}$ provide the best results. This capacitor must be placed close to the IC using short capacitor leads and short copper traces. Do not use capacitors larger than $330 \mu \mathrm{~F}$. See section on Cout in Output Capacitor Selection (Cout).
2. To simplify the capacitor selection procedure, refer to the quick design table shown in Table 7. This table contains different output voltages, and lists various output capacitors that will provide the best design solutions.
From the quick design table shown in Table 7, place the output voltage column. From that column, place the output voltage closest to the output voltage in the application. In this example, select the $24-\mathrm{V}$ line. Under the output capacitor section, select a capacitor from the list of through-hole electrolytic or surface-mount tantalum types from four different capacitor manufacturers. TI recommends using both the manufacturers and the manufacturers' series listed in the table.
In this example, through-hole aluminum electrolytic capacitors from several different manufacturers are available:

- $\quad 82-\mu \mathrm{F}, 35-\mathrm{V}$ Panasonic HFQ Series
- $82-\mu \mathrm{F}, 35-\mathrm{V}$ Nichicon PL Series

3. The capacitor voltage rating must be at least 1.5 times greater than the output voltage, and often much higher voltage ratings are required to satisfy the low ESR requirements needed for low output ripple voltage.
For a $20-\mathrm{V}$ output, a capacitor rating of at least 30 V or more is required. In this example, either a $35-\mathrm{V}$ or $50-$ V capacitor would work. A $35-\mathrm{V}$ rating was chosen, although a $50-\mathrm{V}$ rating could also be used if a lower output ripple voltage is required.
Other manufacturers or other types of capacitors may also be used, provided the capacitor specifications (especially the $100-\mathrm{kHz} \mathrm{ESR}$) closely match the types listed in Table 7. Refer to the capacitor manufacturers' data sheet for this information.

9.2.2.2.4 Feedforward Capacitor (C_{FF})

For output voltages greater than approximately 10 V , an additional capacitor is required. The compensation capacitor is typically between 50 pF and 10 nF , and is wired in parallel with the output voltage setting resistor, R_{2}. It provides additional stability for high output voltages, low input or output voltages, or very low ESR output capacitors, such as solid tantalum capacitors. Use Equation 6 to calculate $\mathrm{C}_{\text {FF }}$.

$$
\begin{equation*}
\mathrm{C}_{\mathrm{FF}}=\frac{1}{31 \times 10^{3} \times \mathrm{R}_{2}} \tag{6}
\end{equation*}
$$

This capacitor type can be ceramic, plastic, silver mica, and so forth (because of the unstable characteristics of ceramic capacitors made with $\mathrm{Z5U}$ material, they are not recommended).
The table shown in Table 7 contains feedforward capacitor values for various output voltages. In this example, a $1-\mathrm{nF}$ capacitor is required.

9.2.2.2.5 Catch Diode Selection (D1)

1. The catch diode current rating must be at least 1.3 times greater than the maximum load current. Also, if the power supply design must withstand a continuous output short, the diode must have a current rating equal to the maximum current limit of the LM2595. The most stressful condition for this diode is an overload or shorted output condition. See Table 2.
2. The reverse voltage rating of the diode must be at least 1.25 times the maximum input voltage. Schottky diodes provide the best performance, and in this example a $3-\mathrm{A}, 40-\mathrm{V}, 1$ N5822 Schottky diode is a good choice.
3. This diode must be fast (short reverse recovery time) and must be placed close to the LM2595 using short leads and short printed circuit traces. Because of their fast switching speed and low forward voltage drop, Schottky diodes provide the best performance and efficiency, and must be the first choice, especially in low output voltage applications. Ultra-fast recovery or high-efficiency rectifiers are also good choices, but some types with an abrupt turnoff characteristic may cause instability or EMI problems. Ultra-fast recovery diodes typically have reverse recovery times of 50 ns or less. Rectifiers such as the 1 N4001 series must not be used because they are too slow. The 3-A diode rating is more than adequate and will not be overstressed even for a shorted output.

9.2.2.2.6 Input Capacitor (C_{IN})

A low ESR aluminum or tantalum bypass capacitor is required between the input pin and ground to prevent large voltage transients from appearing at the input. In addition, the RMS current rating of the input capacitor must be selected to be at least $1 / 2$ the DC load current. The capacitor manufacturer's data sheet must be checked to assure that this current rating is not exceeded. Figure 23 shows typical RMS current ratings for several different aluminum electrolytic capacitor values.

The important parameters for the input capacitor are the input voltage rating and the RMS current rating. With a nominal input voltage of 28 V , an aluminum electrolytic aluminum electrolytic capacitor with a voltage rating greater than $42 \mathrm{~V}\left(1.5 \times \mathrm{V}_{\mathbb{I N}}\right)$ is required. Because the next higher capacitor voltage rating is 50 V , a $50-\mathrm{V}$ capacitor must be used. The capacitor voltage rating of ($1.5 \times \mathrm{V}_{\mathrm{IN}}$) is a conservative guideline, and can be modified somewhat if desired.

This capacitor must be placed close to the IC using short leads and the voltage rating must be approximately 1.5 times the maximum input voltage.
The RMS current rating requirement for the input capacitor of a buck regulator is approximately $1 / 2$ the DC load current. In this example, with a 1-A load, a capacitor with a RMS current rating of at least 500 mA is required.
Figure 23 can be used to select an appropriate input capacitor. From the curves, place the $50-\mathrm{V}$ line and note which capacitor values have RMS current ratings greater than 500 mA . Either a $100-\mu \mathrm{F}$ or $120-\mu \mathrm{F}, 50-\mathrm{V}$ capacitor could be used.

If solid tantalum input capacitors are used, TI recommends that they be surge current tested by the manufacturer. See caution when using a high dielectric constant ceramic capacitor for input bypassing, because it may cause severe ringing at the $\mathrm{V}_{\mathbb{I N}}$ pin.
For a through-hole design, a $120-\mu$ F, 50-V electrolytic capacitor (Panasonic HFQ series or Nichicon PL series or equivalent) would be adequate. Other types or other manufacturers' capacitors can be used provided the RMS ripple current ratings are adequate.
For surface-mount designs, solid tantalum capacitors can be used, but caution must be exercised with regard to the capacitor surge current rating (see Input Capacitor ($C_{I N}$) or input capacitors in this data sheet). The TPS series available from AVX, and the 593D series from Sprague are both surge current tested.

To further simplify the buck regulator design procedure, TI is making available computer design software to be used with the SIMPLE SWITCHER line of switching regulators.

Table 7. Output Capacitor and Feedforward Capacitor Selection Table

OUTPUT VOLTAGE (V)	THROUGH-HOLE ELECTROLYTIC OUTPUT CAPACITOR			SURFACE-MOUNT TANTALUM OUTPUT CAPACITOR		
	PANASONIC HFQ SERIES ($\mu \mathrm{F} / \mathrm{V}$)	NICHICON PL SERIES ($\mu \mathrm{F} / \mathrm{V}$)	FEEDFORWARD CAPACITOR	AVX TPS SERIES ($\mu \mathrm{F} / \mathrm{V}$)	SPRAGUE 595D SERIES ($\mu \mathrm{F} / \mathrm{V}$)	FEEDFORWARD CAPACITOR
1.2	330/50	330/50	0	330/6.3	330/6.3	0
4	220/25	220/25	4.7 nF	220/10	220/10	4.7 nF
6	220/25	220/25	3.3 nF	220/10	220/10	3.3 nF
9	180/25	180/25	1.5 nF	100/16	180/16	1.5 nF
12	120/25	120/25	1.5 nF	68/20	120/20	1.5 nF
15	120/25	120/25	1.5 nF	68/20	100/20	1.5 nF
24	82/35	82/35	1 nF	33/25	33/35	220 pF
28	82/50	82/50	1 nF	10/35	33/35	220 pF

9.2.2.3 Application Curves

LM2595
www.ti.com

10 Power Supply Recommendations

The LM2595 is designed to operate from an input voltage supply up to 40 V . This input supply must be well regulated and able to withstand maximum input current and maintain a stable voltage.

11 Layout

11.1 Layout Guidelines

As in any switching regulator, layout is very important. Rapidly switching currents associated with wiring inductance can generate voltage transients which can cause problems. For minimal inductance and ground loops, the wires indicated by heavy lines must be wide printed circuit traces and must be kept as short as possible. For best results, external components must be placed as close to the switcher IC as possible using ground plane construction or single point grounding.
If open core inductors are used, take special care regarding the location and positioning of this type of inductor. Allowing the inductor flux to intersect sensitive feedback, IC groundpath and $\mathrm{C}_{\text {out }}$ wiring can cause problems.

When using the adjustable version, take special care regarding the location of the feedback resistors and the associated wiring. Physically place both resistors near the IC, and route the wiring away from the inductor, especially an open core type of inductor (see Open Core Inductors for more information).

11.2 Layout Examples

$\mathrm{C}_{\text {IN }}-150-\mu \mathrm{F}, 50-\mathrm{V}$ aluminium electrolytic Nichicon, PL series
Cout - $120-\mu \mathrm{F}, 25-\mathrm{V}$ aluminium electrolytic Nichicon, PL series
D1 - 3-A, 40-V Schottky rectifier, 1N5822
L1 - $68-\mu \mathrm{H}, \mathrm{L} 30$, Schottky, through-hole
Figure 38. Typical Through-Hole PCB Layout, Fixed Output (1X Size)

Layout Examples (continued)

$\mathrm{C}_{\mathrm{IN}}-150-\mu \mathrm{F}, 50-\mathrm{V}$ aluminium electrolytic Nichicon, PL series
$\mathrm{C}_{\text {OUt }}-120-\mu \mathrm{F}, 25-\mathrm{V}$ aluminium electrolytic Nichicon, PL series
D1 - 3-A, 40-V Schottky rectifier, 1N5822
L1 - $68-\mu \mathrm{H}, \mathrm{L} 30$, Schottky through-hole
R1-1-k Ω, 1\%
R2 - Use formula in Detailed Design Procedure
$\mathrm{C}_{\text {FF }}$ - See Table 7
Figure 39. Typical Through-Hole PCB Layout, Adjustable Output (1X Size)

11.3 Thermal Considerations

The LM2595 is available in two packages: a 5-pin TO-220 (NDH) and a 5 -pin surface-mount TO-263 (KTT).
The TO-220 package can be used without a heat sink for ambient temperatures up to approximately $50^{\circ} \mathrm{C}$ (depending on the output voltage and load current). Figure 40 shows the LM2595T junction temperature rises above ambient temperature for different input and output voltages. The data tor these curves was taken with the LM2595T (TO-220 package) operating as a switching regulator in an ambient temperature of $25^{\circ} \mathrm{C}$ (still air). These temperature rise numbers are all approximate and there are many factors that can affect these temperatures. Higher ambient temperatures require some heat sinking, either to the PCB or a small external heat sink.
The TO-263 surface-mount package tab is designed to be soldered to the copper on a printed-circuit board (PCB). The copper and the board are the heat sink for this package and the other heat producing components, such as the catch diode and inductor. The PCB copper area that the package is soldered to must be at least 0.4 in^{2}, and ideally must have 2 or more square inches of 2 oz (0.0028 in) copper. Additional copper area improves the thermal characteristics, but with copper areas greater than approximately $3 \mathrm{in}^{2}$, only small improvements in heat dissipation are realized. If further thermal improvements are required, TI recommends using double sided or multilayer PCB with large copper areas.

Figure 41 show the LM2595S (TO-263 package) junction temperature rise above ambient temperature with a 1-A load for various input and output voltages. This data was taken with the circuit operating as a buck switching regulator with all components mounted on a PCB to simulate the junction temperature under actual operating conditions. This curve can be used for a quick check for the approximate junction temperature for various conditions, but be aware that there are many factors that can affect the junction temperature.
For the best thermal performance, wide copper traces and generous amounts of PCB copper must be used in the board layout. (One exception to this is the output (switch) pin, which must not have large areas of copper.) Large areas of copper provide the best transfer of heat (lower thermal resistance) to the surrounding air, and moving air lowers the thermal resistance even further.

Thermal Considerations (continued)

Package thermal resistance and junction temperature rise numbers are all approximate, and there are many factors that will affect these numbers. Some of these factors include board size, shape, thickness, position, location, and even board temperature. Other factors are, trace width, total printed-circuit copper area, copper thickness, single- or double-sided multilayer board, and the amount of solder on the board. The effectiveness of the PCB to dissipate heat also depends on the size, quantity, and spacing of other components on the board, as well as whether the surrounding air is still or moving. Furthermore, some of these components such as the catch diode will add heat to the PCB and the heat can vary as the input voltage changes. For the inductor, depending on the physical size, type of core material, and the DC resistance, it could either act as a heat sink taking heat away from the board, or it could add heat to the board.

CIRCUIT DATA FOR TEMPERATURE RISE CURVE

 TO-220 PACKAGE (NDH)| Capacitors | Through-hole electrolytic |
| :--- | :--- |
| Inductor | Through-hole, 68- $\mu \mathrm{H}$ Schottky |
| Diode | Through-hole, 3-A, 40-V Schottky |
| PCB | 3 square inches, single-sided 2-oz copper (0.0028") |

Figure 40. Junction Temperature Rise, TO-220

CIRCUIT DATA FOR TEMPERATURE RISE CURVE

TO-263 PACKAGE (KTT)

Capacitors	Surface-mount tantalum, molded D size
Inductor	Surface-mount, $68-\mu \mathrm{H}$, Schottky
Diode	Surface-mount, 3-A, 40-V, Schottky
PCB	3 square inches, single-sided 2-oz copper $\left(0.0028^{\prime \prime}\right)$

Figure 41. Junction Temperature Rise, TO-263

12 Device and Documentation Support

12.1 Community Resources

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2ETM Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.2 Trademarks

E2E is a trademark of Texas Instruments.
SIMPLE SWITCHER is a registered trademark of Texas Instruments.
All other trademarks are the property of their respective owners.

12.3 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.4 Glossary

SLYZ022 - TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
551011367-031	ACTIVE			0	1	TBD	Call TI	Call TI			Samples
LM2595S-12	NRND	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	TBD	Call TI	Call TI	-40 to 125	$\begin{aligned} & \text { LM2595S } \\ & -12 \mathrm{P}+ \end{aligned}$	
LM2595S-12/NOPB	ACTIVE	$\begin{array}{r} \hline \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2595S } \\ & -12 P_{+} \end{aligned}$	Samples
LM2595S-3.3	NRND	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	TBD	Call TI	Call TI		$\begin{aligned} & \text { LM2595S } \\ & -3.3 \text { P+ } \end{aligned}$	
LM2595S-3.3/NOPB	ACTIVE	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR		$\begin{aligned} & \text { LM2595S } \\ & -3.3 \mathrm{P}_{+} \end{aligned}$	Samples
LM2595S-5.0	NRND	$\begin{array}{r} \hline \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	TBD	Call TI	Call TI		$\begin{aligned} & \text { LM2595S } \\ & -5.0 \mathrm{P}_{+} \end{aligned}$	
LM2595S-5.0/NOPB	ACTIVE	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR		$\begin{aligned} & \text { LM2595S } \\ & -5.0 \mathrm{P}_{+} \end{aligned}$	Samples
LM2595S-ADJ	NRND	$\begin{array}{r} \hline \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	TBD	Call TI	Call TI		LM2595S -ADJ P+	
LM2595S-ADJ/NOPB	ACTIVE	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	45	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR		LM2595S -ADJ P+	Samples
LM2595SX-12/NOPB	ACTIVE	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \\ \hline \end{array}$	KTT	5	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR	-40 to 125	$\begin{aligned} & \text { LM2595S } \\ & -12 \mathrm{P}_{+} \end{aligned}$	Samples
LM2595SX-3.3/NOPB	ACTIVE	$\begin{array}{r} \hline \text { DDPAK/ } \\ \text { TO-263 } \\ \hline \end{array}$	KTT	5	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR		$\begin{aligned} & \text { LM2595S } \\ & -3.3 \mathrm{P}_{+} \end{aligned}$	Samples
LM2595SX-5.0	NRND	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	500	TBD	Call TI	Call TI		$\begin{aligned} & \text { LM2595S } \\ & -5.0 \mathrm{P}_{+} \end{aligned}$	
LM2595SX-5.0/NOPB	ACTIVE	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \\ \hline \end{array}$	KTT	5	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR		$\begin{aligned} & \text { LM2595S } \\ & -5.0 \mathrm{P}+ \end{aligned}$	Samples
LM2595SX-ADJ	NRND	$\begin{array}{r} \hline \text { DDPAK/ } \\ \text { TO-263 } \\ \hline \end{array}$	KTT	5	500	TBD	Call TI	Call TI		LM2595S -ADJ P+	
LM2595SX-ADJ/NOPB	ACTIVE	$\begin{array}{r} \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	500	Pb-Free (RoHS Exempt)	CU SN	Level-3-245C-168 HR		$\begin{aligned} & \text { LM2595S } \\ & \text {-ADJ P+ } \end{aligned}$	Samples
LM2595T-12/NOPB	ACTIVE	TO-220	NDH	5	45	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-NA-UNLIM	-40 to 125	$\begin{aligned} & \text { LM2595T } \\ & -12 P_{+} \end{aligned}$	Samples
LM2595T-3.3/NOPB	ACTIVE	TO-220	NDH	5	45	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-NA-UNLIM		$\begin{aligned} & \text { LM2595T } \\ & -3.3 \mathrm{P}_{+} \end{aligned}$	Samples

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan (2)	Lead/Ball Finish (6)	MSL Peak Temp (3)	Op Temp (${ }^{\circ} \mathrm{C}$)	Device Marking (4/5)	Samples
LM2595T-5.0	NRND	TO-220	NDH	5	45	TBD	Call TI	Call TI		$\begin{aligned} & \text { LM2595T } \\ & -5.0 P_{+} \end{aligned}$	
LM2595T-5.0/NOPB	ACTIVE	TO-220	NDH	5	45	Green (RoHS \& no Sb/Br)	CU SN	Level-1-NA-UNLIM		$\begin{aligned} & \text { LM2595T } \\ & -5.0 \mathrm{P}_{+} \end{aligned}$	Samples
LM2595T-ADJ	NRND	TO-220	NDH	5	45	TBD	Call TI	Call TI		$\begin{aligned} & \text { LM2595T } \\ & \text {-ADJ P+ } \end{aligned}$	
LM2595T-ADJ/NOPB	ACTIVE	TO-220	NDH	5	45	Green (RoHS \& no $\mathrm{Sb} / \mathrm{Br}$)	CU SN	Level-1-NA-UNLIM		$\begin{aligned} & \text { LM2595T } \\ & \text {-ADJ P+ } \end{aligned}$	Samples

${ }^{(1)}$ The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but Tl does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
${ }^{(2)}$ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS \& no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
Green (RoHS \& no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)
${ }^{(3)}$ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
${ }^{(4)}$ There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
${ }^{(5)}$ Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
${ }^{(6)}$ Lead/Ball Finish - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer:The information provided on this page represents Tl's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

Device	Package Type	Package Drawing	Pins	SPQ	$\begin{array}{\|c\|} \hline \text { Reel } \\ \text { Diameter } \\ (\mathrm{mm}) \end{array}$		$\begin{gathered} \mathrm{AO} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { B0 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{K} 0 \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \text { P1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \mathrm{W} \\ (\mathrm{~mm}) \end{gathered}$	Pin1 Quadrant
LM2595SX-12/NOPB	$\begin{aligned} & \text { DDPAK/ } \\ & \text { TO-263 } \end{aligned}$	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2595SX-3.3/NOPB	$\begin{array}{c\|} \hline \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2595SX-5.0	$\begin{aligned} & \hline \text { DDPAK/ } \\ & \text { TO-263 } \end{aligned}$	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2595SX-5.0/NOPB	$\begin{array}{l\|} \hline \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2595SX-ADJ	$\begin{array}{l\|} \hline \text { DDPAK/ } \\ \text { TO-263 } \end{array}$	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2
LM2595SX-ADJ/NOPB	$\begin{gathered} \text { DDPAK/ } \\ \text { TO-263 } \end{gathered}$	KTT	5	500	330.0	24.4	10.75	14.85	5.0	16.0	24.0	Q2

*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
LM2595SX-12/NOPB	DDPAK/TO-263	KTT	5	500	367.0	367.0	45.0
LM2595SX-3.3/NOPB	DDPAK/TO-263	KTT	5	500	367.0	367.0	45.0
LM2595SX-5.0	DDPAK/TO-263	KTT	5	500	367.0	367.0	45.0
LM2595SX-5.0/NOPB	DDPAK/TO-263	KTT	5	500	367.0	367.0	45.0
LM2595SX-ADJ	DDPAK/TO-263	KTT	5	500	367.0	367.0	45.0
LM2595SX-ADJ/NOPB	DDPAK/TO-263	KTT	5	500	367.0	367.0	45.0

NDH0005D

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

Tl's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.
Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.
Tl's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate Tl products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.
Tl's provision of TI Resources does not expand or otherwise alter Tl's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such Tl Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI .
TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.
Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.
TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify Tl and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

